- [技术支持]亿金工程分析石英晶振内部结构的周期性2018年01月23日 11:03
石英晶体的原子面符号
石英晶体和非晶体本质差别在于它们的内部结构是否存在周期性。为了描述晶体结构的周期性,用空间点阵来模拟晶体内部结构。通过点阵的“点子”作三组向不同的平行线,就构成了空间格子,称为“晶格”,如图1.2.1。
图1.2.1晶格示意图
整个空间格子是由一个单元重复排列的结果,这个重复单元就称为“晶胞”。晶胞是石英晶体结构的基本单元,晶胞的形状和大小由晶胞参数(晶胞的几个边长和这几个边长之间的夹角)来决定。晶胞的选择不是唯一的,除反映晶体内部的周期性外,还要反映晶体的外部对称性。
石英晶体的晶胞是选择如图1.2.2所示的六角晶胞,其晶胞参数为c=b=d4.9404A;c=5.394A;a=B=90°;y=120°
图1.2.2六角晶胞示意图
在晶体点阵中,通过任一点子,可以作全同的原子面和一原子面平行,构成一族平行原子面。这样一族原子面包含了所有点子,它们不仅平行而且等距,各原子面上点子分布情况相同。晶体中有无限多族平行原子面。不同族原子面在石英晶振晶体中的方位不同,原子面的间距不同,原子在原子面上的分布不同,相应的物理性质也不同。因此,我们用原子面指数来表示该族原子面的方位,代表该族原子面。为了表明各个原子面,一般采用原子面指数(hk)表示,只有三角晶系和六角晶系才采用原子面指数(hki1)表示,现分别介绍如下。
一、一般晶系原子面指数表示法
从几何学中知道要描述一个平面的方位,就要选一个坐标系,然后标出这个平面在此坐标轴上的截距,或标出这个平面的法线在此坐标系中的方向余弦,描述原子面的方位也是如此。选某一原子(或离子、分子)的重心为坐标原点,以晶胞的三个边a、b、c(即晶轴)为坐标系,但应注意:
(1)由贴片晶振晶轴组成的坐标系不一定是直角坐标系
(2)晶轴上的长度单位分别为晶格常数a、b、c,所以截距的数值是相应晶格常数的倍数。
例如M1、M2、M3原子面与三个晶轴分别交于M1、M2、M3点,如图1.2.3所示,三个截距为
图1.2.3(236)原子面
知道了原子面在坐标中的截距,就等于知道原子面在晶体中的方位,所以也可用截距p、q、r来标志原子面,但由于原子面与某晶轴平行时相应的截距为无限大,为了避免出现无限大,改用截距倒数的互质比。
来标记原子面,为了简化常略去比例记号,采用(hk)表示,(hk)就称为原子面指数(或晶面指数、密勒指数),例如图1.2.3中原子面指数为(2,3,6)即:
有时也称MM2M3平面为(2,3,6)原子面,图1.2.4中标出了一些简单的原子面指数,因为有源晶振,石英晶振晶轴有正向、负向之分,所以原子面指数也有正、负之分,通常将负号写在指数的上面,例如(010)原子面,就表示原子面与a轴、c轴平行,与b轴的截距为-b。
图1.24一些简单的原子面指数
六角晶系和三角晶系原子面指数表示法上述原子面表示法可用于全部晶系,具有普遍性,但在六角晶系中采用四个晶轴的坐标系比较方便,四个晶轴中的a、b、d、轴在同一平面上,互成120°0,夹角,c轴则与此平面垂直。原子面指数(hk1)中h、k、i、l则分别对应于a、b、d、c轴截距倒数的互质比。例如,某原子面与四个晶轴分别交于M1M2M3M4点,如图1.2.5所示四个截距为
OM2=pa=4a
OM2=qb=4b
OM3=rc=2c
OM4=td=-2d
图1.2.5(1122)原子面
这些截距倒数的互质比为
可见图M1M2M3M4面的原子面指数为 (1122)。
图12.2表示六角晶胞的原子面指数,图1.2.5表示右旋石英晶振,石英晶体的部分原子面指数,从这些的原子面指数中可以看出:
(1)存在这样的规律,即h+k+i=0。这就是说,在h,k,i中,只要知道其中两个即可确定第三个,利用这种关系,有的资料中把原子面指数(h k i l)简写为(h k l)。
(2)通过(hkiD)原子面的前三个指数h,k,i全部排列,可得六个原子面,这六个原子面与z轴平行,X射线的反射角(即掠射角) θ相同。其物理性质也相同。如(1010)原子面,将前三个指数全部排列,即得六个原子面为(1010),(1100),(0110),(100),(0110),(1010)这就是石英晶体的六个m面。
(3)通过对(hki1)原子面的三个指数h,k,l全排列,以及将第四个指数l(l0)变号后再排序,可得十二个原子面,根据晶体的对称性发现这十个原子面可分为二组,每组六个原子面,同一组原子面的性质完全相同例如:(1011)原子面,将前三个的指数全排列,即得六个原子面为(101i),(1101),(0111),(1101),(011),(1011)将第四个指数变号后,再全排列,又得六个原子面为(1011),(101),(011),(1101),(0111),(1011)将这十二个原子面分成两组,前三个和后三个原子面为一组,中间六个原子
面为一组,即:
甲组:(1011),(1101),(0111),(1101),(0111),(1011)
乙组:(1101),(011),(1011),(1011),(1101),(01)
将这些结果与图1.2.6比较,即可看出,甲组原子面就是石英晶体中的六的R面,乙组原子面就是石英晶体中的六个r面
(a)右旋石英晶体(b)上部R面和r面(c)下部R面和r面
图1.2.6右旋石英晶体的原子面指数
- 阅读(219)
- [技术支持]石英晶振容易忽视的缺陷会影响到使用性能吗?2018年01月20日 10:19
石英晶体无论是天然的还是人造的,都不同程度地存在一些疵病(缺陷)。它们不仅是由于在石英晶体生长过程中受到种种条件的影响而产生,就是在已形成的晶体中和生长完成后,外界条件的变化(主要是温度)产生的缺陷。这些缺陷会影响其可用程度和石英晶体元件的性能,以下简要介绍几种常见的缺陷。
一、双晶
双晶是指两个以上的同种晶体,按一定规律相互连生在一起。即在同块晶体中,同时存在两个方位不同的左旋部分(或右旋部分)。其中一部分绕Z轴转180°后方与另一部分连生在一起,这两部分的z轴彼此平行,所以两部分的光学性能相同,而电轴两部分相差180°,故它们的极性相反(见图1.4.1)。
光双晶是异旋晶体的连生,即在一块贴片晶振晶体中,同时存在左旋和右旋两个部分,它们连生在一起,左旋和右旋的光轴彼此平行,但旋光性相反,此外电轴极性也相反(见图1.4.2)。
(a)左旋石英晶体的极性;(b)绕光轴转180°°后左旋石英晶体的极性C)电双晶的极性;
图1.4.1电双晶极性示意图
(a)左旋石英晶体的极性;(b)右旋石英晶体的极性;(c)光双晶的极性;
图1.4.2光双晶极性示意图
电双晶又称道芬双晶;光双晶又称巴西双晶。双晶的边界可用氢氟酸腐蚀显示出来(见图1.4.3)。
双晶多出现在天然石英晶体中,但在石英晶体谐振器晶片加工中也会诱发出双晶。例如:石英晶片加热温度超过573℃,或虽然不超过573°C,但石英片内部温度梯度太大,都可能产生电双晶;又如:晶片研磨时,由于机械应力的作用,可能产生微小的道芬双晶。
(a)电双晶腐蚀图像(b)光双晶腐蚀图像
图1.4.3电双晶、光双晶在z平面上的腐蚀图像
在压电石英晶体元件中,一般不允许含有双晶,若要利用含有双晶的石英晶片时,则对双晶的位置和比例要严加限制,因此在石英晶片加工中,要力求避免双晶的出现
二、包裹体
石英晶体中往往含有固体、胶体和气—一液体三种包裹体。
固体包裹体是混杂在晶体内部的其它矿物质,天然石英晶振,石英晶体中固体包裹体大部分是围岩碎屑和黄铁矿、金红石等。人造石英晶体的固体包裹体主要是硅酸铁钠( NaFesi2O6.2H2O),它是由高压釜内壁被腐蚀脱落的亚铁离子和其它离子,与NaOH或Na2CO3溶液和SiO2等产生化学反应而形成的。
胶体包裹体是含钾(K)、钠(Na)硅酸盐胶体所组成。它是由于石英晶体生长过程中,温度发生波动时溶液中的二氧化碳达到超饱和状态,来不及结晶而形成胶体包裹体。
气一液包裹体中的液体主要是水溶液、碳酸和其它混合液,气体是二氧化碳及挥发性化合物等,气一液包裹体多集中在晶体底部包裹体是石英晶体的一种主要缺陷,实验表明,如果晶片中含有大的针状包裹体时,对石英晶体元件的电性能影响很大。
石英晶体的包裹体可用显微镜观察法或油槽观察法等进行检查
三、蓝针
石英晶体中蓝色针状的缺陷称为蓝针。
蓝针形成的原因很多,有人认为蓝针内部包含有铁、锰、铜、锌等金属氧化物,在这些氧化物外部还有密集的小气泡或小水珠,当光线通过它们时,除蓝色光线外,其它光都被吸收掉,因此在晶体内部呈现蓝色针状缺陷。还有人研究发现,存在蓝针的地方有很细的裂缝,它与晶体原有宏观裂隙平行生长,说明蓝针是属于晶体内部机械破坏的结果。
对一般应用的压电石英水晶振荡子,石英晶振,贴片晶振晶片可以存在蓝针,但用于制造稳定度高的和频率比较高的石英晶体元件时,不允许其石英晶片有蓝针存在。
四、其它疵病
在一些晶体中,可隐隐看出数个晶体的影子,这叫幻影或称魔幻。它是由于晶体生长中断了一段时间,后来又在晶面上继续结晶而形成的。幻影破坏了晶体格架的完整性,影响晶体的弹性,属晶体内部深处的缺陷。
裂隙是存在于晶体内部的小裂缝。它的形成可能是由于生长区中二氧化硅供应不足,杂质分布不均匀,籽晶不完善,机械应力和温度变化不均匀等缘故节瘤是由许多小晶块构成的镶嵌结构,其形状像是很小的晶体镶嵌到大晶体的表面。这种镶嵌结构是受温度、压力、溶液饱和程度和混合物数量等生长条件影响而形成.
石英晶体振荡器,有源晶振,石英晶振晶体内部某处有集中的许多微小气泡和小裂隙,呈现白色如棉花状,这种缺陷俗称为棉。
- 阅读(207)
- [技术支持]石英晶振晶体是什么结构?什么样的工作形态?2018年01月19日 09:07
石英晶体俗称水晶,成份是SiO2,它不但是较好的光学材料,而且是重要的压电材料。在常压下不同温度时,石英晶振晶体的结构是不同的。温度低于573℃时,是a石英晶体;温度在573℃~870℃时,是B石英晶体;温度在870℃~1470℃时,是磷石英,温度达1470℃时,就转变成方石英,它的熔点是1750℃。用于制造压电晶体元件的为a石英晶体
石英晶体的结晶形态和坐标系
固体可以分为结晶体(晶体)与非结晶体(非晶体)两大类。晶体中有外形高度对称的单晶体(如石英晶体)和由许多微细晶体组成的多晶体(如各种金属)。晶体的主要特性是原子和分子的有规则排列,这种排列反映在宏观上是外形的对称性,而非晶体就不具备这种特性,例如石英玻璃,它的成份与贴片石英晶振石英晶体一样是SiO2,但不属于晶体。
晶体可以是天然的,也可以由人工培养。晶态物质在适当条件下,能自发地发展成为一个凸多面体形的单晶体。围成这样一个多面体的面称为晶面;晶面的交线称为晶棱;晶棱的会集点称为顶点。发育良好的单晶体,外形上最显著的特征是晶面有规则的配置,属于同一品种的晶体,两个对应晶面(或晶棱)间的夹角恒定不变。图1.1.1给出了理想石英晶体的外形。
石英晶体的晶面共30个,分为五组,六个m面(柱面),六个R面(大棱面),六个r面(小棱面)六个s面(三方双锥面),六个x面(三方偏方面),相邻m面的夹角为60°相邻m面和R面的夹角与相邻m面和r面的夹角都等于38°13,相邻s面与x面的夹角等于25°57。由于外界条件能使某一个或某一组晶面相对地变小或完全隐没,所以实际见到的石英晶体很少如图1.1.1所示,就是人造石英晶体的外形也只是接近理想情况。
(a)右旋石英晶体 (b)左旋石英晶体
图1.1.1石英晶体的理想外形
晶体内部结构的规律性,造成了它在外形上的对称性。例如:晶体可以有对称轴、对称中心、对称面等对称元素。石英晶体存在一个三次对称轴(或三次轴即晶体绕该轴旋360°3后能够复原)和三个互成120°的二次轴,如图1.1.2中的a、b、d轴
图1.1.2石英晶体的对称轴和直角坐标系
在结晶学中,晶体的内部结构可以概括为是由一些“点子”在空间有规则地作周期的无限分布:“点子”代表原子、离子、分子或其集团的重心。这些“点子”的总体称为点阵,构成石英晶体的是二氧化硅分子,而二氧化硅分子的重心又正好与硅离子重合,因此硅离子的点阵就可以反映出石英晶体的内部结构。石英晶体振荡器,石英晶体的各层硅离子若按右手螺旋规则分布,则称为右旋石英晶体;若按左手螺旋规则分布,称为左旋石英晶体。从外形上看,右旋石英晶体的s面在R面的右下方或m面的左上方,左旋石英晶体的s面在R面的左下方或m面的右上方(见图1.1.1),它们互为镜象对称。
晶体物理性质的各向异性和晶体外形的对称性有关,因此讨论石英贴片晶振,石英晶体的物理性质时,采用为图1.1.2所示的直角坐标系较为方便。选c轴为z轴,a(或b、d)轴为x轴,与x轴、z轴垂直的轴为y轴。其指向按1949年IRE标准规定对左、右旋石英晶体均采用右手直角坐标系。
- 阅读(386)
- [技术支持]石英贴片晶振的电介质只能以极化方式传递电的作用2018年01月17日 09:16
石英晶体的介电性质,大家知道,金属可以导电,这是因为金属中存在着自由电子,在电场的作用下,这些自由电子被迫作定向运动而形成电流。然而,电介质是不能导电的,这是因为电介质中的电子(称束缚电子)被原子核束缚得很紧,在一般电场作用下,束缚电子的位置只能作很小的移动。这种移动造成介质中的正、负电荷中心不重合而产生极化,所以电介质只能以极化方式传递电的作用。本节要介绍石英晶振晶体电介质的极化性质及其所遵循的电学规律。
一、电介质的极化和极化强度
如图2.1.1(a)所示的电介质中,介质的两面已被敷金属电极,当电场等于零时,介质中的正、负电荷中心重合,介质处于电中性。当电场不等于零时,在电场的作用下,介质中的正、负电荷中心不再重合,并形成许多电偶极矩,于是介质产生极化,如图2.1.1(b)所示。因这些电偶极矩头尾相衔接,故可画成如图2.1.1(c)所示的情况,在介质与电极的分界面上分别出现正、负极化电荷(即正、负束缚电荷)。电偶极矩的方向规定为从负极化电荷指向正极化电荷,电偶
(a)E=0时,介质处于中性状态()E≠0时,介质产生极化(c)介质极化示意图
图2.1.1电介质极化示意图
极矩的大小等于ql,其中l为正、负极化电荷之间的距离,q为极化电荷。如果以p表示电偶极距,即可写成
p=ql (2.1.1)
为了描述电介质的极化强度,现引入极化强度的概念。极化强度P等于单位,体积(△V=1)内的电偶极矩的矢量和,即
p=
(2.1.2)
由式(2.1.2)可以得到,石英贴片晶振电介质的极化电荷面密度极与该处极化强度的法向量Pn之间的关系为
σ极=Pn (2.1.3)
二、各向异性介质中极化强度P,电位移D和电场强度E之间的关系,晶体都是各向异性体,对于完全各向异性电介质(如三斜晶系),实验上发现,D、E、P的方向彼此不同,但关系式D=6oE+P依然成立。P与E的关系和D与E的关系分别为
式中;比例系数x称为介质的极化率(或极化系数)。e称为介电常数(F/m); ε/ε0称为相对介电常数。εo为真空介电常数
ε0=8.85×10-12F/m。
由式(2.1.4)和(2.1.5)可以看出,各向异性电介质的极化率有9个分量,介电常数也有9个分量.
在物理上,按照式(2.1.4)和(2.1.5)的形式,用9个分量来反映二个矢量之间关系的物理量,称为二级张量。在数学上,常用矩阵形式来表示张量。
极化率的矩阵表示式为:
完全各向异性电介质的极化率和介电常数都是6个独立分量,它们的数值由材料的介电性质所确定。
三、介电常数
我们已经知道,描写各向同性介质只要一个介电常数,而描写完全各向异性的电介质则需要六个独立的介电常数分量。石英晶振,有源晶振,石英晶体属于三斜晶系32点群,它是介于各向同性和完全各向异性之间的晶体。根据它的对称性,可得到石英晶体的介电常数矩阵为:
由式(2.1.9)可以看出,石英晶振晶体不等于零的介电常数分量共3个,其中独立分量2个,即ε11=ε22和ε33,ε12=ε13=ε23=0。石英晶体相对介电常数的数值为
因为各向异性电介质的介电常数与方向有关,所以坐标变换时,相应的介电常数分量也发生变化。例如:绕x轴旋转某一角度q1的新坐标系Oxyz中
(见图2.1.2)。
图2.1.2绕x轴旋转q1角度后,新、旧座标之间的关系
石英晶体的介电矩阵为:
知道φ1角后,即可通过式(2.1.11)求得所需的介电常数分量εkl
- 阅读(883)
相关搜索
亿金热点聚焦
关于无源晶振有源晶振不同之处的分析报告
1CVCO55CW-3500-4500非常适合卫星通信系统应用
- 2节能单片机专用音叉晶体ABS07-120-32.768KHZ-T
- 3可编程晶振CPPC7L-A7BR-28.63636TS适用于驱动模数转换器
- 4汽车氛围灯控制器晶振E1SJA18-28.63636M TR
- 5京瓷陶瓷晶振原厂编码曝光CX3225GB16000D0HPQCC适合于数字家电
- 6SMD-49晶振1AJ240006AEA专用于车载控制器应用
- 7ECS-3225MV-250-BN-TR晶体振荡器是LoRa WAN的理想选择
- 8ECS-TXO-20CSMV-260-AY-TR非常适合稳定性至关重要的便携式无线应用
- 9LVDS振荡器ECX-L33CN-125.000-TR提供频率可配置性及多种包装尺寸
- 10ECS-240-18-33-JEN-TR3非常适合电路板空间至关重要的应用