关于晶振的信息亿金电子在前面的文章中已经提到过很多次了,大家有不懂的可以到亿金新闻动态中了解.下面我们要说的是关于石英晶振晶片的由来以及石英晶振晶片的工作原理.
石英晶振晶片的由来
科学家最早发现一些晶体材料,如石英,经挤压就象电池可产生电流(俗称压电性),相反,如果一个电池接到压电晶体上,石英晶体就会压缩或伸展,如果将电流连续不断的快速开「关,晶体就会振动。
在1950年,德国科学家GEORGE SAUERBREY研究发现,如果在石英晶体,石英晶体谐振器的表面上镀一层薄膜,则晶体的振动就会减弱,而且还发现这种振动或频率的减少,是由薄膜的厚度和密度决定的,利用非常精密的电子设备,每秒钟可能多次测试振动,从而实现对晶体镀膜厚度和邻近基体薄膜厚度的实时监控。从此,膜厚控制仪就诞生了。
薄薄圆圆的晶振片,来源于多面体石英棒,先被切成闪闪发光的六面体棒,再经过反复的切割和研磨,石英棒最终被做成一堆薄薄的(厚0.23mm,直径1398mm)圆片,每个圆片经切边,抛光和清洗,最后镀上金属电极(正面全镀,背面镀上钥匙孔形),经过检测,包装后就是我们常用的晶振片了。
用于石英膜厚监控用的石英芯片采用AT切割,对于旋光率为右旋晶体,所谓AT切割即为切割面通过或平行于电轴且与光轴成顺时针的特定夹角。AT切割的晶体片振动频率对质量的变化极其灵敏,但却不敏感干温度的变化。这些特性使AT切的石英晶体片更适合于薄膜淀积中的膜厚监控。
石英晶振晶片的原理
石英晶体是离子型的石英晶体,由于结晶点阵的有规则分布,当发生机械变形时,例如拉伸或压缩时能产生电极化现象,称为压电现象。例石英晶振晶体在9.8×104Pa的压强下承受压力的两个表面上出现正负电荷约0.5V的电位差。压电现象有逆现象,即石英晶体在电场中晶体的大小会发生变化,伸长或缩短,这种现象称为电致伸缩。
石英晶体压电效应的固有频率不仅取决于其几何尺寸,切割类型而且还取决于芯片的厚度。当芯片上镀了某种膜层,使芯片的厚度增大,则芯片的固有频率会相应的衰减。石英晶振,石英晶体的这个效应是质量负荷效应。石英晶体膜厚监控仪就是通过测量频率或与频率有关的参量的变化而监控淀积薄膜的厚度。
石英晶体法监控膜厚,主要是利用了石英晶体,石英晶体振荡器的压电效应和质量负荷效应。
石英晶体的固有频率f不仅取决于几何尺寸和切割类型,而且还取决于厚度d,即f=N/d,N是取决与石英晶振晶体的几何尺寸和切割类型的频率常数对于AT切割的石英晶体,N=f·d=1670Kcmm。
物理意义是:若厚度为d的石英晶体厚度改变△d,则石英贴片晶振频率变化△f,式中的负号表示晶体的频率随着膜增加而降低然而在实际镀膜时,沉积的是各种膜料,而不都是石英晶体材料,所以需要把石英晶振厚度增量△d通过质量变换转换成膜层厚度增量△dM,即
A是受镀面积,pM为膜层密度,p。为石英密度等于265g/cm3。于是△d=(pM/pa)"△dM,所以
式中S称为变换灵敏度。
对于一种确定的镀膜材料,为常数,在膜层很薄即沉积的膜层质量远小于石英芯片质量时,固有频率变化不会很大这样我们可以近似的把S看成常数,于是上式表达的石英晶振晶体频率的变化人行与沉积薄膜厚度△dM有个线性关系因此我们可以借助检测石英晶体固有频率的变化,实现对膜厚的监控。
显然这里有一个明显的好处,随着镀膜时膜层厚度的增加,晶振频率单调地线性下降,不会出现光学监控系统中控制信号的起伏,并且很容易进行微分得到沉积速率的信号。因此,在光学监控膜厚时,还得用石英晶振,石英晶体法来监控沉积速率,我们知道沉积速率稳定队膜材折射率的稳定性、产的均匀性重复性等是很有好处和有力的保证。
石英晶体膜厚控制仪有非常高的灵敏度,可以做到埃数量级,显然石英晶体的基频越高,控制的灵敏度也越高,但基频过高时晶体片会做得太薄,太薄的芯片易碎。
所以一般选用的石英晶振,贴片晶振片的频率范围为5~10MHz。在淀积过程中,基频最大下降允许2~3%,大约几百千赫。基频下降太多振荡器不能稳定工作,产生跳频现象。如果此时继续淀积膜层,就会出现停振。为了保证振荡稳定和有高的灵敏度体上膜层镀到一定厚度后,就应该更换新的晶振片。
此图为膜系镀制过程中部分频率与厚度关系图。